Farey neighbors and hyperbolic Lorenz knots

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the distribution of Farey fractions and hyperbolic lattice points

We derive an asymptotic formula for the number of pairs of consecutive fractions a′/q′ and a/q in the Farey sequence of order Q such that a/q, q/Q, and (Q − q′)/q) lie each in prescribed subintervals of the interval [0, 1]. We deduce the leading term in the asymptotic formula for ’the hyperbolic lattice point problem’ for the modular group PSL(2,Z), the number of images of a given point under t...

متن کامل

Peripheral Polynomials of Hyperbolic Knots

If K is a hyperbolic knot in the oriented S3, an algebraic component of its character variety containing the holonomy of the complete hyperbolic structure of finite volume of S3 \ K is an algebraic curve (excellent component K). The traces of the peripheral elements of K define polynomial functions in K. These functions are related in pairs by canonical polynomials. These peripheral polynomials...

متن کامل

Factoring Families of Positive Knots on Lorenz-like Templates

We show that for m and n positive, composite closed orbits realized on the Lorenz-like template L(m, n) have two prime factors, each a torus knot; and that composite closed orbits on L(−1,−1) have either two for three prime factors, two of which are torus knots.

متن کامل

Prime Decomposition of Knots in Lorenz-like Templates

Abstract. In [7] R. F. Williams showed that all knots in the Lorenz template are prime. His proof included the cases where any number of positive twists were added to one of the template’s branches. However [7] does give an example of a composite knot in a template with a single negative twist. Below we will show that in all the negative cases composite knots do exist, and give a mechanism for ...

متن کامل

Twisted Alexander Polynomials of Hyperbolic Knots

We study a twisted Alexander polynomial naturally associated to a hyperbolic knot in an integer homology 3-sphere via a lift of the holonomy representation to SL(2,C). It is an unambiguous symmetric Laurent polynomial whose coefficients lie in the trace field of the knot. It contains information about genus, fibering, and chirality, and moreover is powerful enough to sometimes detect mutation. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Knot Theory and Its Ramifications

سال: 2017

ISSN: 0218-2165,1793-6527

DOI: 10.1142/s0218216517430040